INTERSPECIFIC AND INTERGENERIC RELATIONS BETWEEN NEMATODES PARASITIC IN THE STOMACHS OF KANGAROOS AND WAIILABIES

by H. Hoste* \& I. Beyeridget

Summary

 shomachs of kangaroos and wallabies. Trans. R Soc, S, Aasm 117(4), 171-177, 30 November, 1943,

Associations between conspecific and confiatnilial nematodes co-oceuring at high prevalenees in the stomachs of the castern grey kangaro. Macropus glganteus, from Victoria, the red kangaroo, M. rufus fiom New South Whies and rock wallabics of the Petrogale assimilis species complex P, assimatis, B. sharmant and P. marector, from Queensland, were iovestigated using principal components unalysis. A stmifur pattern of associations wan lound in each hosi spectes. ednsistiag mainly of positive associations between nematode species. Negative. associations were found with Rugopharynt australis the numerically dominamt nemsiode in A. gigantews and M. rufus, and to a lesser extent with R, zeta in Perrogale spp. The complex nematode communties present in each host were shown to be stable, with few negative associations between members.

Kfy WOBDS: Macropus segunteqs, Macropus rufis, Petrogale assmilis, trematodes, cormunities, associatians, mutivariate analysis

Introduction

Parasite communities in homeothermic animals are frequently complex in nature, with nsany species of parasites uccurting in an individual host or host organ (Bush et al. 1990; Kennedy \& Bush 1992). Because of the complexity of the community and, frequently, the large numbers of helminth species involved, the question as to whether community members interact or have interacled in the past to produce a stable, predictahle structure or are non-interactive und resull from a rathdom collection of independent, individual specics. has received considerable attention (see Holmes 1986, Price 1986). Evidence for the existence of interactive cormmunities has been provided in the Lase of cestodes of ducks (Bush \& Holmes 1986 a, b) and arichostrorgylvid nematodes in sheep (Diez-Banos et al. 1992. Hoste \& Cabaret 1992) while at the other extreme the complex assemblages of monogencan parasites present as ectoparasites of fishes appear to exhbit few interactions (Rhode 7479; Koskivasra \& Valtonen 1992; Koskivara et al. 1992).

Amongst nematode parasites, the best known examples of complex parasite conmunuties existing within it single host orgin are the oxyunoid nematodes of tortoises (Schad 1963; Petcer 1966), and the strongyloid nemutodes of elephants (Chabaud 1957), horses (Kennedy \& Bush 1992) and kangatoos (Inglis 1971, Kennedy \& Bush 1992). In the case of karngaroos, up to 40 species of nematodes, all belonging to a single order, the Strongylida, occur in the complex satccular fore-stomachs of individual host species (Spratt er al)

[^0]1990), with numbers of parasites reaching 300,000 or niore (see Beveridge \& Arumdel 1979), Several studies, (Mykytowycz 1964; Mykytowycz \& Duczinski 1965; Smates \& Mawson 1978b; Arundel ot al. 1979) have demonstrated that different species or genera of nematodes have different site preferences within the stomachs of kangaroos, is is the case with oxyuroid nematodes in tortoises (Sehad 1963; Petter 1966), but there have been no studies undertaken to determine whether there is any evidence of interactions within these helminth communsitics.

Recently, Hoste \& Cabarct (1992) hrive utilised a principal components analysis (PCA) and comparison with the model of Matomura 1947) in which the $\log _{10}$ abundance of a species is correlated with is rank in terms of abundance for exarnining the stability of nomatode communities in sheep and the existence of interactions between the species or genera of parasites present with a host. It this paper. we apply their techniques to examine whether thare is evidence of competitive interactions between the nematode parasites present in the stomachs of three taxa of macropodid marsupials.

Materials and Methods

Parasiroiogical data

Data utilised in this swdy were obtained from earlier epidemiological studies on the parasites of macropodids.
The data for Petrogale assimitis included 35 specimens of P assimilix as well as tive specimens of whal were formerly known as the Mt Claro and Mareeba chromosonal races of this species. They have recently been named P. sharmami and P mareeba respectively (Eldridge \& Close 1992), Rock wallabies were collected over an extensive area of fortiern and
western Queenstand (see Beveridge et al. 1989) during a study of the taxonomy of the hosts. Nematode taxa included in the study. their prevalence and mean intensity of infection are shown in Table 1. Any heltrinth species occurelag eutside the stomach, or at a prevalence of less than 10% eg, Cloacina simitis, Coronastrangylus caronatas, Labiastrangy/us bancrafi, Macropostrongylas petrogale etc.) was not considered to be a core species (sensu Hanksi 1982) and was excluded from the statistical analyses. In addition, nematodes such as Woodwardostrongylus oberdorfi for which intensity data were not available, were also excluded. Since similarity caefficients for the belminth communities in P assimilis, P, sharmani and P. marecha are high (Beveridge el at. 1989), combination of their data was considered justifiable.

Dita from Macropus kiganteus were derived from an opidemiological study conducted at Xin Yean. Victoria, in which two adull and lour juvenile kangaroos were collecred al six-weekly intervals over

Tarli I: Prevalence and inemsity if infoction of the nriscipal momatade parasiles preseni it the stmmach of 39 Perrogale assimilis. \mathbf{P} sharmant and P mareeba from Quecestand.

Prasite species	Prevaletic (\%)	Mean Intersity
Ragepharyna zeta (Johnalum B Mawson, 1939)	33	2,190
Cliucina perrogale Johnstor \&		
Mawson, 1938	72	390
C. Dedrsont Mawson, 1971	98	980
C. parva Johnston \& Mawson, 1938	109	780
C. hadryormis Johnston \& Mawson. 1938	46	200
C. sp. (undescribed) (C. sp. 1 of Beveridge ef al. 1989)	54	420
Filarinema spp. (F) dissimmle (Wood, W311), E auszrale (Wood, 193D), F nanasinue Cassome \& Baccami, 1985)	33	13
Tabie 2. Erevalence and intensity of infection of the pourlyal nematode parasires present in the stomach of 45 Mrempus gigantens fram Ken Kean. Victoria.		
Parasite species	Erevalenc (粦)	Mean Infensity
Rugopharynx custralis (Möming, 1926) $100 \quad 46.290$		
Presidente. 1978	27	2,210
Clocacina spp. (C obiusa Johnston \& Mawsan, 1939, C. of hydriformis Johnston \& Mawson, 1938. C. cl. elegans. Johnston \& Mawson, 1938)	98	7,630
dithostrougylus spa (2. bipapillosas (Iohuston \& Mawson, 1938), L. kungi Mawsont, 1955]	7.7	20id)
Pharyngestcongylus kappu Mawson, 1965	85	9,350
Simmg toides sp: (undescribed)	59	5

a period of 10 months (Arundel er al. 1990). The prevalence and mean intersity of infection for the principal nematode species in the stomachs of these hosts are shown in Table 2. Any gernatode species occurring in less than 10% of the host specimens (eg. Alocowiona ctelandi) was excluded from the analyxis, as were the species of intestinal cestotes.

Data on the hedminth parasites of Macropus. rufics were collected at a siagle localiny, Menindee, New South Waler (see Arundel ef al, 1979), with 12 animals collected every two months, over a period of two years. Samples of kargarcoss were collected within Kinchega National Park and on properties immediately adjacent to the Park. The only difference in prevalence detected was in the case of the bile ducr inhabiting cestode Progamotaenia festiva bsee Arundel et al 1979). No difierences were detected in the intensity of infection with any parasite. Hence it was considered valid to use combined data from the two adjacent collection localities (Table 31. Helminth patasites occurring at a low prevalence ar intmisity, such as the nematodes Macrapostrongyloides spp., and Hypodontus macropi and the cestodes Progamovaemia nuficola and Triplotaenia undosa were excluded from the analysis.

Changes in the nomenclature of parasites since the publication of the original epidemiological papers have heen indicated in 'Tables 1-3, together with appropriate references. In M. gigameas, individuals of the genus Labiostrongylus and in M suffes and M. gigantews members of the gemus Cloucina were not identified in a quantilative fashinn to species level, because of inadequate information on the laxonomy of these genera, though the species present at each loeality wero recorded. In M_{1} gigamters, most of the species of Ctracita present are undescribed.

TABs 5. 3. Prevalence and intensity of infectian of the principal nematode parasites present in the stomach of 100 Macropus tufus from Menindec, New South Wales,

Stulistical methods

For each host species, a separate principiat component analysis (PCA) was performed, using the STATITCF computer program (1988), on both the Intensity data (selsu Margolis et al, 1982) and the frequency data defined as the number of nematodes or a particular species expressed as a percentage of the total number of worms within that host, The data were scandardised prior to analysis as (actual value - mean vitue for the variable) - standard error for the variable.
The data were atranged in a correlation matrix whose columns (variables) were the parasite species and rows were the individual animals، Component axes were defined from correlations between the variables (parasite species numbers). The coordinates of each variable were then expressed in relationship to the new axes, Axes 1 to 3 were studied, the percentage of

Table 4. Percentage of total variability expressed by comporent uxes 1,2 and 3 following Principat Component Analysis (PCA) of the intensity und frequency of infection of Perrogale spp, Macropus giganteus and M. rufus with nemaide parasites.

Host species	Axis 1	Axis 2	$(1+2+3)$	
Petrogule spp.				
[ntensity	34.4	22.0	18.7	75.1
Frequency	31.6	23.8	19.2	74.6
Macropus gigantus				
Intensity	28.0	24.5	18.4	709
Frequency	33.6	21.3	18.3	73.2
Macropus rufus				
Intensily	37.0	19.7	16.8	73.5
Frequency	31.2	18.6	18.0	67.8

Yariability accounted for by ench axis being indicated for each PCA in Table 4.
For each host species and each set of dala, i,e. imensity and frequency, Euclidean distances between parasite species were calculated by applying Pythagoras' theorem to the coordinates of each variable, i.e. parasite species, was located within the three dimensional space constructed by axes I to 3 (Table 5) These distances characterised quantitatively the relation between nematode species. The minimum value for these distances was 0 , the maximum 2 . Distance values >1.2 and <0.8 anc considered indicative of negative and positive interactions between species respectively (Hoste \& Cabaret 1992).
In each host species, the distances between each pair of nematode specics were calculated in the three planes and the result was called D_{2}. These D_{2} distances were fitted to the logarithmic model of Motomura (1947) i.e. the decimal logaridims of distances were regressed on the rank of each species pair According to Motomura's (1947) model, the $\log _{10}$ of the abundance of a species is correlated with its rank in the order of most abundant to least abundant species.
In addition, in order to represent the relation of one particular species to others present in the stomach. mean distances were calculated as the averages of the D_{2} distances for each pair of worm species including the particular species of interest. These mean distances were called D_{s} in both species of kangaroos as they were distances between a given parasite tixon and five others, and called D_{6} in the case of the rock wallabies sinee the distance was from six other taxa.

Table 5. Coordinates of nematode species on component wes $1, Z$ and 3 following a Principal Comportents Anatysis (PCA) performed on the intensity and frequency of infection of Petrogates spp., Mueropus giganteus and M . rutus, with rematode purasites:

Host	Parasile	Intensity Data			Frequency Data		
		Axis	Axis 2	Axis	$\begin{gathered} \text { Axis } \\ 1 \end{gathered}$	$\underset{2}{\text { Axis }}$	Axis
Perrogale spp:	Cloucina sp. 1	-0.625	0.311	0.497	1).382	0.070	0.772
	C. hydriformis	-0.218	-0.813	-0.084	-10.338	-0.768	0.324
	C. parva	-0.783	0.298	-0.448	-0.629	0.501	-0,453
	C. pearsom	0.863	0.179	-0.394	-0.743	0.319	0.409
	C. perrogale	-0.456	-0.785	0.137	-0.224	-0, 0.838	-0,24x
	Rugopharys sela	-0,636	-0,081	0.505	0.912	0.039	-0,112
	Filarinerna spp.	-0.024	0.198	0.653	0.349	0.120	-0. 538
Mocropis giganteus:	Rugopharyirs ausiratis	0.653	0.594	0.169	0.954	-0.244	0.051
	P. kappa	-0,305	0.262	0.673	-0.109	0,876	-0.220
	Cloacina spp.	-0.374	0.714	-0.294	-0.906	-0.248	0.039
	Labiostringytus spp.	-0.370	-0.077	0.688	0.076	0.614	0,450
	R. rosemariae	-0. 0.517	0.647	-0.135	-0.444	-0.120	0.582
	Strong ylotdes sp.	0.785	Q. 337	0.216	-0.264	-0.010	-0.710
Macropas rulact	Sabtostrongytus tongispterdans	0.004	0.391	0.878	0.162	-0.088	0.622
	Filarineme spp.	-0.686	0, 066	0.014	-0.487	-0. 844	1.141
	Rugopharynx australis	-0.400	-0.133	0.087	0.988	0.037	-0.132
	Cloacina spp.	-0.503	0.627	-0.019	-0.318	0.419	0.578
	Mallabinetria cobbl	-0.819	-0.159	-0.167	-0.050	0.259	0.386
	Papillostrangylus-sp.	-0.138	-0.769	0.452	-0.728	0.393	-0.417

Results

Average distances of individual species from remaining

 species (D_{5} and D_{θ})Comparison of the mean euclidean distances for each Worm species with related species in the three different hosts showed several similarties (Fig. 1). Firstly, in the three host species, the mean distances calculated from the frequency data were generally higher thatn those calculated fron the intensity data. Secondly, no mean distances calculated from intensity or frequency

Fig. 1. Mean distances (D_{2} \& D_{6}) between individual parasite taxa, based on both intensity (closed histograms) and comparative frequency of occurience (open bistograuris) in (a) Petrogale spp., (b) Macropus giganteus and (c) M. rufus calculated from principal components analysis (PCA).
1.egend: C Cloacina spp- Cl , Cloacina hydriformis; C 2 . C: parva; C3, C. pearsoni; C4, C. petrogale; C5, C sp: F. Filarinema spp.; L, Labiestrongylus spp.; PA, Papillostrongylus sp.; P, Pharyngostrongylus kappa; R Rugapharyns arsifalis: $\mathrm{R1}, R$ zeta; $\mathrm{R} 2, R$. rosemariae: S. Srongyloudes sp; W, Wallabinema cobhi.
data exceeded 1.2 which is suggestive of no negative association between species. Thirdly, based on the frequency data, the highest valucs of D_{3} were associated with the species Rugopharynx australis in both of the kangaroo species. Though nol so marked, a similat situation prevailed with R. zeta in rock wallabies having a D_{6} value as high as any other of the other associations.

Average distances between species pairs (D_{2} distances)

Comparison of the ranked D_{2} distance distributions in the three host species added to the results obtained by analysis of the D_{5} and D_{6} distances. In the PCA performed on the frequency data (Fig .2), the rank distribution of the D_{2} distances for the 15 pairs of worni species in the red and grey kangaroos, and for

Fig. 2. Ranked distances (D_{2}) between parasite species pairs based in comparative frequency of occurtence in (a) Parogale spp., (b) Macropus gigantews and (c) M, rufus calculated from principal components analysis.
Legend is for Fig. 1.
the 21 pairs in the rock wallabies fitted Motomuri＇s model．Additionally，some of the distances between nematode species were high（ >1.2 ）which suggests negative interactions．This observation was made in the three different bost species，and aroong those pairs exhibiting the highest distance values，Rugopharynx spp．were usually present．These results suggest that Kugupharynx was negatively associated with the ohet worm species based on the frequency amalysis．

The D_{2} distances calculated from the intensity dama （Fig．3）were lower than those obtained from PCA periormed on the frequency data．In the three different host species．the D_{2} distances were less than 1．2，and usually less than 10 ，which tends 10 indicate the lack of any significant negative association between nemalode species．The tank distributisn of pallernk of these D_{2} distances also fitted Motomura＇s model． When compared to the distribution of the D_{2}

Tie．3．Ranked 山istances（ D_{2} ）between parasite species pairs hased tom iniensities of infection in（a）Petrogale xpp．（b） Macropus gizantens and（c）M＋thfus calculacel from principal components analysis．
Legend：as for Fig．I．
distances obtained froni the frequency analysis，the order of the different pairs in the intensity data was distince，with a less well defined ranking of Rugopharyhe australis：

Discussion

The results of unalysis boith of lrequency and intensity of infection data for all three species of macropodid hosts can be fitted to Motomura＇s model （1947）for dertsity associations between populations of similar spevies within the same biotope and suggest the existeluce of stable nematode communities in the stomachs of the macropodid species examined． Furthermose，most of the D_{2} distances calculated on the intensity data were less than 1,0 and even less，than 0.8 ．As these distances are thought to reflect the intensity of parasitisin th the suprapopulation level or host population level，this fact provides additional cvidence of the preponderance of positive associations between component species and hence infers the existence of stable communities．Positive assuciations are known to occur in the case of other host groups acquiring their parasite infections from grazing pastures contaminaled with various species of infective third stage larvae of nematodes such as ruminants（Diez－ Banos et al．1992；Hoste \＆Cabaret 1992）．On the nther hand，the frequency－based distances mainly reflect the infracommunity present in the individual host，and the fact that the frequency－based distances were generally greater than those derived Irom intensity data suggests that additional regulatory factors are itrvolved at the suprapopulation level，as occurs also in the case of ruminants（Hoste \＆Cabaret 1992）．The regulation of nematode populations in kangaroos is not well understood．Sotales \＆Mawson（1978）and Arundel et al． $\mathbf{1 9 9 0}$ ）demonstrated that in the case of the Tammar wallaby，M．eugenit and eastern grey kangaroo M ． giganteus，in winter raliffall areas of South Australia and Victoria，there was an increase in the number of nematodes present in the stomach during the moist winter months which is the most favourable period of the year for larval development in the external environmeni．Arundel et al．（1990）also demonstrated an effect of host age on certain specics of nematodes （e．g．Rugopharymx rosemariac），with juvenile anmals exhibiting a higher prevalence and intensily of infection，while in other nematode genera（Cloacina， spp．，R．ausirulis）antensity was higher in adult hosts． By contrast，the study by Arundel et al．（1979）on the red kangaroo，M．rufus，in the arid，non－seasonal rainfall region of western New South Wales indicated in the case of several of the dominant nematode species （R．australis，Wallabinema cobbi）that there was no seasonal effect on intensity of infection and that intensity of infection increased linearly with host age． If all of these three Macropus speciex，Labiostrongyhus
spp. exhihiced an unque pattern of development. with larval stages maruring over a period of several months. during the sammer (Mykytowycz \& Dudzinski 1965; Smales \& Mawson 1978a: Arundel et al. 1979). Recause of the lack of detailed knowledge of the way in which nematode populations in kangaroos are regulated, is is difficuit io explair what the additional regulatory factors at the suprapopulation inferted by the present analysis might be. However, Petter (1966) also found an effect of host age and season on interactions between the oxyuroid nematodes of tortoises, suggesting that these might be general ghenomena.

In contrast to other studies on gastro-intestinal stringylid nematodes (Hoste \& Cabare 1992; DiczBanos et al 1997), analysis of populations of the stomach-tohabiting nematodes parasitic in three species of macropodid hosts failed to seveal evidence of extensive megative interactions between nematode species, The only suggestion of negative associations involyed Ragopharyin sustralls in red and grey kangaroos, and in both of these karigaroos, R. custralis is tumerically the dominant stomach nemawode (Arundel et al. 1979, 1990; Beveritge \& Arundel 1979). In the case of the roxk wallabies no particular dominart species emerged. Rugopharyax zeta occurred at a Figher miensity in rock wallabies than other gastric nematodes, bue occurred at a prevalence of only 50%. Cloacina pearsoni and C. parva by contrast occurred in 100% of the hosts ctamined but at a lower intensity, The differences in intensity and prevalence may counteract one another to present a community $7 n$ which there are few negative interactions. An additional consideration when comparing data Irom tock wallables with that from the kangaroos is that in the Former case fosts were coliected over a wide ares of northern Queensland, compared with single localities for each of the kangaroo species.

Negative associations are evident in the frequency data only, which refers essentially to the infrapopulation at the individual host level; there is no such evidence from analysis of the raw intensity data, which relates oo the parasite suprapopulation or the host population Jevel. However, Holmes (1986) has cautigned that interactions are frequently shscured when suprapopulstions are considered and that the optimum method for detection of interaction is at the infrapopulation level, a conctusion which is clearly supposted by the curreal results.

Thus, the nematode communities present in the three species of twacropodids examined here demonstrate similar features in heing stable, and probably mainly nun-competitive communities, with the exception of Rugopharyex australis. This lack of negative associations sonirasts sharply with the resules of Bush \& Holmes (1986a) from anudies on the cestodes of ducks and those of Hoste \& Cabaret (1992) and D 1ez-

Banos of uL. (992) for rurminants, Rohde (1979) suggested that in row-interactive commumities not all niches are filled, there is no basis fire competition and differential lecalisation or parasites occurs becanse it facilitates repruduction rather than minimises competition. Rondets hypolfusis (1979) is therefore consistent with the data currently available for nemaiode commsunties parasitic in the stamachs of macropodids. The kangaroo stomach is a relatively enormous organ in comparison with the size of parasites, and data from various sources eeg. Beveriage \& Arunde] 1979) suggests that healthy macropodids are capable of harbouring numbers of nematodes far in excess of those encountered in this study. Hence in is not unreasonable to assume that vacant niches are gbundant within kangaroo stomachs, given the provisothat nematode numbers only have been examined, without any consideration of their relative biomass. Whether the differential localisations of nematodes observed are due to reproductive slrategies or due to the presence of competition in the past, during the evolution of the parasite commanity structure, is not clear.

Price (1986) predicted that considerable variation in community characteristics might be expected when a sufficiently wide range of communities was examined. The present results indicate that speciose nematode communitics of homocothermic verwbrates, while stable in their structure, may nol necessarily displany significant negative associations between their component members.

Acknowledgments

We wish to thank Drs J. H. Arundel, R, Close and S. C. Barker for their involvement in the collections of the arigimal data and Drs D. M Spratt und N. B Chilton and two anomymous referees for their comments on drafts of the manuscript, H , Hoste is a grateful reciplent of a fellowship from the Frencts Mimistry of Research and Space Technology:

References

Arundel \& H^{6} Beveridoe. I \& Presidente, P J. A. (1979) Earasites and pathological findings in enclosed and Gree-ringing populations of Macropus nifus (Desmarest) Maroupialia) at Menindee, New South Wales. Aust WibN Res 6, 361-379.
, Dempter, K. J., Harrigan, K, E, \& Black R. (1090) Epidemtological observations on the helminth parasites of Macropus gigurtew Shaw in Victoria. Ibid 17. 39-51.
 of grey kangaroos, Marropus gigandenz Shaw and M. Guliginosus (Desmares(), in eastern Australia. Did 6 . 69.72

SPRATT, D, M, BaRKER, S, C., ClOSE, R, L, \& Sharman. G. B. (1989) Helmiath parasites of rock wallábie., Pevrogule spp. (Marsupialia) Crom QueenstunkL. thid 16, 273-287

Bush, A. O., Aho, J. J. \& Kennedy, C. R. (1990) Ecological versus phylogenetic determinants of helminth parasite community richness, Evol. Ecol. 4, 1-20.
\& Holmes, J. C. (1986a) Intestinal helminths of lesser scaup ducks: panerns of association. Canad. J. Zool. 64, 132-141.
\& \qquad (1986b) Intestinal helminths of lesser scaup ducks: an interactive community, Ibid 64, 142-152.
Chabaud. A. Gi (1957) Revue critique des nématodes du genre Quiloniu Lane, 1914 et du genre Murshidia Lane, 1914. Ann. parasitol. hum. comp. 31, 48-131.

Diez-Banos, N, Cabaret, I, \& Diez-Bamos, P. (1992) Interspecific interactions in naturally acquired nematode communities from sheep abomasum in relation to age of host and season in four areas of Leon (Spain). int. J. Parasiol. 22, 327-334
Eldridge, M. D. B. \& Close, R. L (1992) Taxonomy of rock wallabies, Petrogale (Marsupialia; Macropodidae). 1. A revision of the eastern Petrogale with the description of three new species. Aust. J. Zool. 40, 605-625.
Hanski, I. (1982) Dyлamics of regional distribution: the core and satellite species hypothesis. Oikos 38, 210-221.
HOLMES, J C. (I986) The structure of helminth communities. pp. 203-208. in M. J. Howell (Ed.) "Farasitolagy-Quo Yadit? (Australian Academy of Science, Canberra).
Hoste, H. \& Cabaret, J. (1992) Intergeneric relations between nematodes of the digestive tract in lambs: a multivatiatc approach, Int. J. Parasitol 22, 173-179.
[nglis, W, G. (1971) Speciation in parasitic nematodes. Advant. Parasitol. 9, 201-223,
Kbnnedy, C. \& Bush, A. O. (1992) Species richness in helminth communities: the importance of multiple congeners. Parasitology 104, 189-197.
Koskivaara, M. \& Valtonen, E, T. (1992) Dacrologyrus (Monogenea) communties on the gills of roach in three lakes in Central Finland. Ibid. 104, 263-272.
\& VuORI, K.-M (1992) Microhabitat distribution and co-existence of Dactologyrus species (Monogenca) on the gills of roach. Ibid 104, 273-281.

Marcolss, L. G., Esch, G. W., Holmes, J. C., Kuris, A. M. \& SCHAD, G. A. (1982) The use of ecological terms in parasitology I Parasitol. 68, 131-133.
Motomura, I. (1947) Further notes on the law of geometrical progression of the population density in animal association. Serei Seitai 1, 55-62.
Mygytowycl. R. (1964) A survey of the endoparasites of the red kangaroo, Megaleia rufa (Desmarest) Parasitology 54, 677-693.
\& DUDZINsKI, M. L. (1965) Sex ratio, weight, Jength and numbers of Labiostrongylus longispicularis (Wood), the large stomach worm of the red kangaroo (Megaleia rufa (Desmarest)), in relation to age of the host and season. Ibid 55, 527-541.
Price, P. W. (1986) Evolution in parasite communities. pp. 209-214. In M. J. Howell (Ed.) "Patasitology-Quo Vadit?" (Australian Academy of Science, Canberra).
Pritiz, A. (1966) Equilibre des espèces dans les populations de nématodes parasites du côlon des wortues terrestres. Mém. Mus. nat. Hist. nat., Paris, Sér. A. Zonol. 39, 1-252.
Rohde, K. (1979) A critical evaluation of intinsic and extrinsic factors responsible for niche restriction in parasiles. Amer. Nat. 114, 648-671.
Scriad, G. A. (1963) Niche diversification in a parasitic species flock. Nature, Lond. 198, 404-406.
Smales, L. R. \& Mawson, P. M. (1978a) Nematode parasites of the Kangatoo Island Wallaby, Macropuy eugenia (Desmarest), I. Seasonal and geographical distribution. Trame. R. Soc. S. Aust. 102, 9-15.
\& \qquad (1978b) Nematodes and other helminth parasites of the Kangaroo Island Wallaby, Macropus eugenii (Desmarest). 2. Site selection within the stomach. Ibid 102, 79-83.
Spratt, D. M., Beveridge, I. \& Walter, E. L. (1990) A catalogue of Australasian monotremes and marsupials and their recorded helminth parasites. Rec. S. Aust. Mus., Monoge. Ser. 1, 1-105.
Stat-ltch (1988) Manuel dutilisation. (Institut Technique des Céréales et des Fourrages, Paris),

[^0]: F Institut national de la Recherche Agronomique, Nouzilly. France.
 T Deparment of Vetermury Science, Liniversity of Melhwume, Parkville, vic. 3052

